Differentiation: The derivative of power functions
The derivative of power functions
In practice, we do not want to calculate derivatives repeatedly using the definition, but we use calculation rules to calculate the derivative directly. We first look at the derivative of a power function.
Power rule
\[\dfrac{\dd}{\dd x}(x^\blue{n})=\blue{n}\cdot x^{\blue{n}-1}\]
Example
\[\begin{array}{rcl} \dfrac{\dd}{\dd x}(x^\blue{5})&=&\blue{5}\cdot x^{\blue{5}-1}\\&=&\blue{5}x^4\end{array}\]
If we have a power function with a constant in front of it, we can easily factor out the constant.
Power rule with a constant
\[\dfrac{\dd}{\dd x}(\orange{c}\cdot x^\blue{n})=\orange{c}\cdot\blue{n} \cdot x^{\blue{n}-1}\]
Example
\[\begin{array}{rcl} \dfrac{\dd}{\dd x}(\orange{2}\cdot x^\blue{-3})&=&\orange{2}\cdot\blue{-3}\cdot x^{\blue{-3}-1}\\&=&-6x^{-4}\end{array}\]
\[\begin{array}{rcl}
\displaystyle \dfrac{\dd y}{\dd x}&=& \displaystyle \dfrac{\dd}{\dd x}\left( {{2}\over{x^3}} \right)\\
&&\phantom{xxx}\blue{y \text{ substituted}}\\
& =&\displaystyle\dfrac{\dd}{\dd x}\left( 2\cdot x^{-3} \right )\\
&&\phantom{xxx}\blue{\text{rewritten to the form }c\cdot x^n}\\
& =& \displaystyle 2 \cdot -3 \cdot x^{-4}\\
&&\phantom{xxx}\blue{\text{power rule with a constant, }\dfrac{\dd}{\dd x}\left (c \cdot x^n\right)=c \cdot n \cdot x^{n-1}}\\
& =&\displaystyle -{{6}\over{x^4}}\\
&&\phantom{xxx}\blue{\text{simplified}}
\end{array}\]
Or visit omptest.org if jou are taking an OMPT exam.